
High Laser Damage Threshold CoatingsValidated by Independent Testing

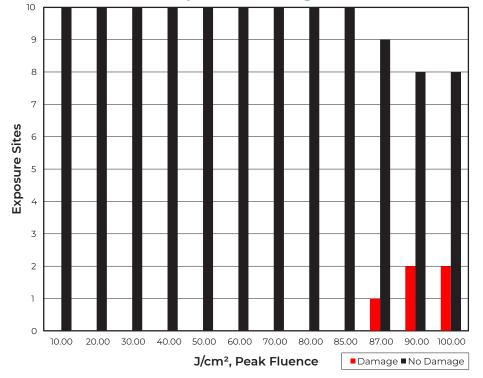
Andover Corporation's coatings are engineered for consistent, reliable performance in highpower laser systems. To confirm this, an **AR-coated quartz optic** was submitted to Spica Technologies, an independent laser damage testing laboratory.

Testing demonstrated that the optic withstood a peak fluence of **85.00 J/cm²** at **1064 nm** with **10 ns** pulses, with no visible damage observed across 10 test sites.

This result highlights the durability and quality of Andover's anti-reflective coatings, making them well-suited for a range of demanding optical applications.

Common applications requiring high laser damage resistance:

Laser beam delivery and focusing Components must withstand high peak power without degrading optical performance.


Optical assemblies for sensing systems

Sensitive systems require coatings that won't fail under repeated laser exposure.

Fiber optics and imaging components

Interfaces exposed to laser coupling or illumination must resist damage to ensure clarity and longevity.

Exposure Histogram - Antireflective (AR) Coatings Spica Technologies

High Laser Damage Threshold Coatings

LASER DAMAGE THRESHOLD SPECIFICATION SHEET AND CERTIFICATE OF COMPLIANCE

CUSTOMER ADDRESS:	Andover Corporation 4 Commercial Dr. Salem, NH 03079	P.O. NUMBER:	PD-28871
		PART ID:	RD-1083
TEST TYPE:	Laser Damage	QUANTITY:	1
	Threshold	SUBSTRATE MATERIAL:	Quartz
TEST LOG NUMBER:	56819		
SAMPLE SIZE:	~	TEST PREP:	N ₂ gas blow
COATING TYPE:	Antireflective (AR)	INCIDENCE ANGLE:	O°
TEST WAVE- LENGTH:	1064 nm	PRF:	10 Hz
POLARIZATION:	Linear	TEST BEAM PROFILE:	TEM _{oo}
PULSEWIDTH (FWHM):	10 ns	AXIAL MODES:	Multiple
SPOT DIAMETER (1/e²):	490µm	NUMBER OF SITES:	120
		EXPOSURE DURATION:	200 shots/site
TEST METHOD:	Least Fluence Failure		

DAMAGE DEFINITION: Plasma, increased He-Ne scatter. Visible damage as observed with 150x Nomarski darkfield microscope.

COMMENTS: Laser damage threshold measuread as 85.00 J/cm², peak fluence. Part irradiated at 85.00 J/cm² with no damage in 10 sites.

Spica Technologies certifies that this sample has been exposed to the conditions described above. All test and calibration data are maintained on file. All instrument calibration is traceable to NIST.

Test conducted by:

18 Clinton Dr. #3 · Hollis, NH 03049 603 882 8223 · www.spicatech.com

