

LiDAR & Laser Optics Filter Reference

Optical filter guidance for common laser applications

This reference matrix provides high-level guidance for selecting optical filters commonly used in LiDAR (Light Detection and Ranging) and laser-based sensing systems.

It is intended to support early-stage system design and RFQ preparation by highlighting typical wavelength usage, filter types, and key performance parameters such as bandwidth, blocking level, and angle of incidence (AOI).

Laser Wavelength	Common Applications	Typical Filter Types	Key Optical Specifications	Design / Selection Notes
905nm	<ul style="list-style-type: none">Automotive LiDARRoboticsShort-range time-of-flight (ToF) sensing	Narrow bandpass	<ul style="list-style-type: none">Bandwidth (FWHM)Visible blockingAOI shift	High solar background drives need for aggressive blocking and center-wavelength stability
940nm	<ul style="list-style-type: none">Short-range LiDARStructured lightVertical-cavity surface-emitting laser (VCSEL) illumination	Bandpass or notch	<ul style="list-style-type: none">Bandwidth controlThermal stabilityAOI tolerance	Lower ambient sunlight; often paired with illumination sources
1064nm	<ul style="list-style-type: none">SurveyingMappingAirborne LiDARLaser rangefinders	Bandpass with AR coatings	<ul style="list-style-type: none">Laser damage thresholdEnvironmental durability	High pulse energy requires robust coating designs
1550nm	<ul style="list-style-type: none">Long-range LiDARAutonomous vehiclesEye-safe laser systems	Narrow bandpass	<ul style="list-style-type: none">Temperature driftAOI sensitivitySubstrate selection	Eye-safe operation enables higher permissible output power

Common optical terms such as FWHM (full width at half maximum), AOI (angle of incidence), AR (anti-reflective), and ToF (time-of-flight) are used according to standard industry definitions. For more on Andover's support for LiDAR applications, visit andovercorp.com/LiDAR

**A Legacy of Quality
Focused on the Future**

